Ricerca

La protezione delle cellule beta dallo stress le può difendere dal diabete di tipo 1

Un farmaco già esistente aumenta la sopravvivenza delle cellule produttrici di insulina sotto attacco autoimmune.

BOSTON – (21 agosto 2020) – Il diabete di tipo 1 si verifica quando il sistema immunitario di una persona distrugge le cellule beta produttrici di insulina nel pancreas. Negli ultimi anni, gli scienziati hanno imparato come coltivare grandi volumi di cellule beta sostitutive, ma i ricercatori stanno ancora provando molte opzioni per proteggere queste cellule dall’attacco immunitario. I ricercatori del Joslin Diabetes Center hanno ora trovato una strategia insolita che alla fine potrebbe aiutare a proteggere tali cellule beta trapiantate o a rallentare l’insorgenza della malattia.

La ricerca su modelli murini (topi di laboratorio) e su cellule umane ha dimostrato che prendere di mira una proteina chiamata renalasi può proteggere le cellule beta dagli attacchi autoimmuni rafforzandole contro lo stress, afferma Stephan Kissler, ricercatore della Sezione di Immunobiologia di Joslin, professore associato di medicina presso la Harvard Medical School, e co-autore senior di un documento che descrive il lavoro in Nature Metabolism. 

Kissler, assieme al co-autore senior Peng Yi, PhD, e i loro colleghi hanno anche dimostrato che un farmaco esistente approvato dalla FDA inibisce la renalasi e aumenta la sopravvivenza delle cellule beta in quei modelli di laboratorio.

Lo studio del Joslin si unisce a una serie crescente di prove che suggeriscono come i problemi funzionali con le cellule beta stesse possono aiutare a innescare l’attacco autoimmune nel diabete di tipo 1, affermano Kissler e Yi, che è pure ricercatore nella sezione scientifica sulle cellule delle isole e sulla biologia rigenerativa. “Potresti avere geni che rendono la cellula beta un po’ ‘disfunzionali e più portate a diventare un bersaglio del sistema immunitario”, spiega Kissler.

La ricerca è iniziata con una conversazione casuale nel corridoio tra Kissler e Yi sui potenziali modi per proteggere le cellule beta dagli attacchi autoimmuni. I due finirono per lanciare un’audace scommessa per provare a inibire i geni attraverso il genoma, uno alla volta, utilizzando una tecnica di screening basata sul metodo di editing genetico CRISPR con una linea cellulare beta di un topo “diabetico non obeso” (NOD) che modella il diabete di tipo 1. “Lo screening CRISPR dell’intero genoma è un potente strumento per la scoperta di nuovi target e speravamo che ci avrebbe aiutato a trovare eventuali mutazioni che proteggono la cellula beta”, afferma Yi.

Lo schermo CRISPR per le cellule beta sopravvissute ha prodotto una dozzina di geni di interesse. Il più sorprendente è stato il gene per la renalasi, che ricerche precedenti avevano dimostrato essere associato al diabete di tipo 1.

Successivamente, i ricercatori hanno creato cellule beta di topo NOD, alcune con il gene renalasi funzionalmente “eliminato” e altre no. Hanno trapiantato queste cellule su topi NOD con diabete autoimmune.

Le cellule beta intatte sono morte, ma le cellule knock-out della renalasi sono sopravvissute. “Questo è stato un modello di ricerca molto in bianco e nero”, commenta Kissler. “Se le cellule non vengono protette, spariscono.”

I ricercatori hanno quindi cercato di vedere se le cellule prive del gene renalasi provocassero una risposta ridotta dalle cellule immunitarie T (che guidano l’assalto autoimmune) in un piatto. Gli scienziati hanno scoperto che un tipo di cellula T aveva meno probabilità di attaccare queste cellule knockout piuttosto che attaccare le normali cellule beta.

Ma cosa stava rallentando questo attacco autoimmune?

In un precedente lavoro per analizzare la sopravvivenza delle cellule beta, Yi aveva analizzato come le cellule rispondono a una condizione chiamata stress del reticolo endoplasmatico (ER). Ora, quando il team ha provato tre modi per introdurre lo stress ER alle cellule beta di topo in un piatto, i ricercatori hanno visto che la mutazione renalasi proteggeva da questa condizione.

Nella fase successiva, per vedere se gli stessi meccanismi erano al lavoro nelle cellule umane, il team si è unito a Douglas Melton del dipartimento di cellule staminali e biologia rigenerativa di Harvard per creare cellule beta umane per test simili in un piatto. “Ancora una volta, abbiamo visto che il knockout renalasi proteggeva le cellule dallo stress ER”, dice Kissler.

Le funzioni della renalasi non sono ben comprese, ma Yi e Kissler sapevano che la proteina è un enzima (che spesso può essere preso di mira dai composti farmacologici) e che altri scienziati avevano prodotto una mappa strutturale cristallina tridimensionale della proteina.

Chiedendosi se questa mappa potesse fornire indizi per scoprire un composto che potrebbe prendere di mira la renalasi, gli investigatori di Joslin iniziarono a lavorare con Celia Schiffer della University of Massachusetts Medical School. I biologi strutturali presso la struttura centrale di progettazione di farmaci basati sulla struttura dell’università presto notarono che la renalasi era molto simile a un altro enzima che è inibito dai farmaci esistenti, incluso un farmaco noto come pargyline che è stato approvato dalla Food & Drug Administration quasi 60 anni fa per il trattamento dell’ipertensione.

Testando la pargyline nel loro modello di topo trapiantato, i ricercatori Joslin scoprirono che il farmaco proteggeva molto bene le cellule beta, afferma Kissler. Studiandolo nelle stesse cellule beta del topo, gli scienziati hanno dimostrato che la pargyline proteggeva effettivamente dallo stress ER. Negli esperimenti con cellule umane, la pargyline ha ripetuto l’effetto protettivo.

Kissler e Yi sperano di testare pargyline in uno studio clinico pilota per vedere se rallenta il progresso del diabete di tipo 1 di nuova insorgenza in un piccolo numero di pazienti. “Poiché è approvato dalla FDA e il farmaco è sicuro, questo sarebbe l’approccio migliore per verificare se la protezione che abbiamo osservato nei topi e nelle cellule umane sarà valida nelle persone”, osserva Kissler. Se i risultati della ricerca continuano ad essere positivi, il loro prossimo obiettivo sarà trovare il sostegno dell’industria per sviluppare un farmaco a piccola molecola che fornisca una protezione ancora migliore rispetto alla pargyline.

Erica Cai di Joslin, Yuki Ishikawa e Wei Zhang sono gli autori co-protagonisti del giornale. Altri collaboratori di Joslin includono Jian Li, Badr Kiaf e Jennifer Hollister-Lock. Anche Nayara Leite e Douglas Melton dell’Harvard Stem Cell Institute sono coautori, così come Shurong Hou, Nese Kurt Yilmaz e Celia Schiffer della University of Massachusetts Medical School. Lo studio è stato finanziato da Harvard Stem Cell Institute, JDRF e National Institutes of Health (National Institute of Diabetes and Digestive and Kidney Diseases).

Rispondi